
Introduction
The SARS-CoV-2 JN.1 variant, a descendant of the 
Omicron BA.2.86 sublineage, has emerged as a dominant 
global strain due to its enhanced transmissibility and 
immune evasion capabilities (1). This virus was first 
identified in August 2023 and the classified as a variant of 
interest by the WHO in December 2023 (2). Prior studies 
found that, JN.1 accounts for over 90% of sequenced cases 
in multiple regions as of early 2024 (3). Though, this new 
variant pretends a lower risk of severe disease compared 
to earlier variants, however its rapid spread emphasizes 
the need for sustained vigilance (4). This virus carries over 
30 spike protein mutations, including the critical L455S 
mutation in the receptor-binding motif (5). This mutation 
reduces ACE2 receptor-binding affinity while enhancing 
infectivity and immune evasion by hindering antibody 
neutralization (5,6). Preliminary studies found that JN.1’s 
spike protein adopts conformational changes that improve 
host cell entry, particularly in lung cells, resembling pre-
Omicron variants like Delta (2,7). The transmissibility 
of JN.1 is 1.5–2 times higher than BA.2.86, driven by its 
ability to thrive in cold, dry climates and evade population 
immunity (8). Reports showed that, between November 
2023 and March 2024, it caused surges across 121 countries, 
peaking at 95.1% of global sequences by mid-2024 (2). 
Common symptoms are resembling to COVID-19 and are 
sore throat, fever, dry cough, fatigue, nausea/vomiting and 
loss of taste/smell (9). The regions most affected by the JN.1 
variant’s spread are primarily in Asia, Singapore, Hong 
Kong, Thailand, China, and India with significant surges 

and increased healthcare burdens reported in these areas 
(10). Beyond Asia, JN.1 has been documented in over 41 
countries, including the United States, United Kingdom, 
France, Canada, and Sweden, where it has become one 
of the fastest-growing variants, but the most intense 
recent impact and public health concern remain focused 
in Asian countries (11). Recent studies found that, JN.1 
exhibits moderate antibody escape, reducing neutralizing 
antibody titers compared to ancestral strains (3,12). 
Therefore, updated mRNA vaccines targeting Omicron 
lineages maintain an appropriated effectiveness against 
symptomatic infection and a suitable protection against 
severe disease (13,14). However, declining immunity 
and low-booster uptake have facilitated its spread 
(15). It is postulated that, vulnerable populations like 
elderly, immunocompromised, diabetics and those with 
comorbidities remain at higher risk of severe outcomes 
and its complication including kidney involvement (16).

Search strategy
For this study, we searched PubMed, Web of Science, 
EBSCO, Scopus, Google Scholar, Directory of Open 
Access Journals (DOAJ) and Embase, using different 
keywords including SARS-CoV-2 JN.1 variant, acute 
kidney injury, chronic kidney disease, COVID-19 and 
apolipoprotein L1.

JN.1 versus other Omicron sub-variants 
The SARS-CoV-2 JN.1 variant exhibits significantly 
higher infectivity compared to other Omicron sub-
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The SARS-CoV-2 JN.1 variant is expected to affect kidney function 
through mechanisms similar to those established for SARS-CoV-2 
infection. Its renal effects from other variants. SARS-CoV-2 JN.1 
could affect kidney function primarily by direct infection of ACE2-
expressing renal cells leading to acute tubular injury and glomerular 
damage, combined with systemic inflammatory and vascular effects 
that contribute to acute kidney injury and long-term renal function 
decline.

variants, particularly its direct ancestor BA.2.86 (1). This 
condition increased infectivity is primarily attributed to 
the unique L455S mutation in the spike protein’s receptor-
binding motif, which enhances viral entry efficiency into 
human nasal epithelial cells and improves spike protein 
cleavage (1,17). Despite a decreased binding affinity to 
the ACE2 receptor relative to BA.2.86, JN.1 compensates 
with enhanced cell entry mechanisms and immune 
evasion, making it more transmissible (18). Laboratory 
studies demonstrate that JN.1 infects primary human 
nasal epithelial cells more effectively than BA.2.86, a key 
factor in its rapid global spread and dominance (19). This 
mutation alters the spike protein’s interaction with ACE2 
and increases the number of hydrogen bonds within 
the spike structure, facilitating better viral attachment 
and fusion (20). Compared to other Omicron sub-
variants, the JN.1 transmissibility is estimated to greater, 
contributing to its rapid replacement of earlier variants 
worldwide since late 2023 (1). While it retains immune 
evasion features typical of Omicron lineages, JN.1’s 
enhanced infectivity distinguishes it as one of the most 
transmissible variants currently circulating (21). The 
immune evasion mechanism of the SARS-CoV-2 JN.1 
variant differs from previous variants primarily due to 
the novel L455S mutation in the spike protein’s receptor-
binding motif (22). This mutation alters the spike protein 
structure, decreasing its binding affinity to the human 
ACE2 receptor compared to its ancestor BA.2.86, yet 
paradoxically enhances infectivity and immune escape 
(23). Unlike earlier variants, JN.1’s L455S mutation 
significantly hinders the ability of neutralizing antibodies, 
especially those targeting the receptor-binding domain 
to attach effectively to the virus (24). This circumstance 
leads to a more robust evasion of antibody-mediated 
immunity, including a marked reduction in neutralization 
by antibodies derived from previous infections or 
vaccinations (25). Studies show JN.1 exhibits a greater 
fold reduction in neutralizing antibody titers than BA.2.86 
and other Omicron sub-variants, indicating stronger 
immune escape (26). Moreover, JN.1 evades a broad 
range of neutralizing antibodies, including those derived 
from common B cell germlines (IGHV3-53/3-66), which 
were effective against earlier variants (27). This immune 
evasion is partly compensated by preserved Fc effector 

functions mediated by class 3 antibodies binding outside 
the ACE2 interface, which may contribute to the relatively 
lower severity of disease despite immune escape (28).

Kidney injury following JN.1
There is no specific published evidence directly linking 
the SARS-CoV-2 JN.1 variant to unique or distinct renal 
involvement compared to other variants (29). However, 
according to the previous evidence on SARS-CoV-2 
kidney pathology, the mechanisms by which COVID-19 
causes kidney injury are likely applicable to JN.1 as well 
(30). SARS-CoV-2 infection can cause kidney damage 
through several pathways by direct infection of renal 
cells via ACE2 receptors expressed on podocytes and 
proximal tubular cells, leading to acute tubular injury 
and collapsing glomerulopathy (31). In addition, indirect 
effects including systemic inflammation, cytokine 
storm, endothelial dysfunction, hypercoagulability, and 
hypoxia, which contribute to acute kidney injury (AKI) 
(32). Moreover, residual inflammation and acute injury 
can result in progressive kidney function decline, even 
in mild-to-moderate COVID-19 cases (33). In fact, AKI 
occurs in a significant portion of hospitalized COVID-19 
patients which ranging from 5% to over 30% in severe 
cases (34,35). This condition is associated with higher 
mortality and risk of chronic kidney disease progression 
(36). Histopathological studies have detected viral RNA 
and particles in kidney tissue, supporting direct viral 
involvement (37). Given that JN.1 retains the ability to infect 
human cells via ACE2 and causes systemic infection, it is 
plausible that it can induce kidney injury through similar 
mechanisms as earlier variants (38). However, no current 
data specifically describe renal complications uniquely 
attributable to JN.1 (39). Previous studies demonstrated 
that, SARS-CoV-2 impacts renal tissue, following direct 
viral infection of kidney cells (40). This virus binds to ACE2 
receptors, which are highly expressed on renal proximal 
tubular epithelial cells, podocytes, mesangial cells, and 
parietal epithelial cells (41). This allows direct viral entry 
and replication in these cells, causing cytopathic effects 
and acute tubular injury (42). One of the presentations 
of renal involvement is AKI, which is common in 
COVID-19 patients, mainly in severe cases (43). Acute 
kidney injury results from direct viral damage, immune 
dysregulation, cytokine storm, endothelial dysfunction, 
and hypercoagulability (32). Viral particles have been 
identified in renal tubular cells and podocytes, supporting 
direct kidney tropism (44). Studies show that COVID-19 
accelerates decline in estimated glomerular filtration 
rate, especially in hospitalized patients, increasing risk 
for chronic kidney disease progression (45). However, 
study regarding indirect systemic effects, detected that, 
hypoxia, coagulation abnormalities, multi-organ injury, 
and nephrotoxic medications also contribute to renal 
impairment during infection (46). Since JN.1 retains the 
ability to infect human cells via ACE2 and causes systemic 
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infection, it likely induces kidney injury through these 
established pathways (38). Therefore, JN.1 can cause 
acute kidney injury, proteinuria, and accelerated kidney 
function decline similar to other SARS-CoV-2 variants 
(47).

Focus on genetic factors 
Several studies showed that, individuals with two risk 
alleles of apolipoprotein L1 (APOL1) variants, (G1 and 
G2), predominantly found in people of West and Central 
African ancestry, have a significantly increased risk 
of developing kidney diseases such as focal segmental 
glomerulosclerosis (FSGS), collapsing glomerulopathy, 
and HIV-associated nephropathy (48). These APOL1 
risk alleles confer an increased risk for certain kidney 
diseases and are associated with worse outcomes in viral-
associated nephropathies (49). A “second hit” such as 
viral infection or inflammation often triggers disease in 
genetically susceptible individuals (50). Other podocyte 
and glomerular gene mutations are consisted of mutations 
in genes affecting podocyte structure and function such 
as NPHS1, NPHS2, WT1, TRPC6, INF2, that predispose 
individuals to nephrotic syndrome and glomerular 
diseases, which can be exacerbated by viral infections 
(51). In this regard, a genetic predisposition to AKI is 
also recently explained (52). Variants in genes related to 
immune response and kidney function may influence 
susceptibility to AKI during systemic infections like 
COVID-19 (53).

Conclusion
There are no specific studies yet identifying genetic factors 
that make individuals more susceptible to kidney damage 
specifically from the SARS-CoV-2 JN.1 variant. However, 
based on general knowledge of genetic susceptibility to 
kidney disease and COVID-19-related kidney injury, 
some genetic variants are known to increase the risk of 
kidney damage in viral infections, which likely applies 
to JN.1 as well. Since JN.1 shares the fundamental 
mechanism of kidney cell infection via ACE2 and induces 
systemic inflammation similar to other SARS-CoV-2 
variants, individuals with high-risk genetic backgrounds 
(especially those with APOL1 risk alleles) may be more 
vulnerable to kidney injury or collapsing glomerulopathy 
triggered by JN.1 infection.
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